SKDT 230

SEMIPONT[®] 7

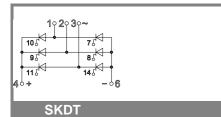
Full Controlled Bridge Rectifier

SKDT 230

Preliminary Data

Features

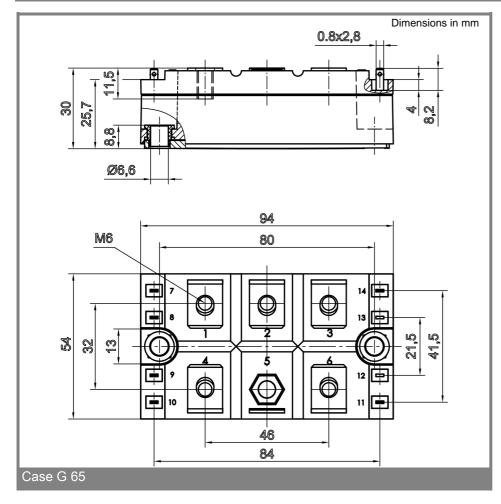
- Robust plastic case with screw terminals
- Heat transfer through aluminium oxide ceramic isolated metal base plate
- Blocking voltage up to 1800V
- High surge current
- lead free solder
- UL -recognition applied for file no. E 63 532

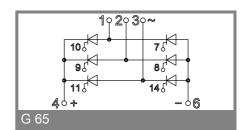

Typical Applications

- Power supplies for electronic equipment
- Field rectifiers for DC motors
- Battery charger rectifiers

1) available on request

V _{RSM}	V _{RRM} , V _{DRM}	$I_D = 230 \text{ A} \text{ (full conduction)}$
V 900	800	(T _c = 80 °C) SKDT 230/08
1300	1200	SKDT 230/08 SKDT 230/12
1700	1600	SKDT 230/16
1900	1800	SKDT 230/18 ¹⁾


Symbol	Conditions	Values	Units
I _D	T _c = 100 °C	165	А
	T _c = 85 °C	215	
I _{TSM}	T _{vi} = 25 °C; 10 ms	1450	А
	T _{vi} = 130 °C; 10 ms	1250	А
i²t	T _{vj} = 25 °C; 8,3 10 ms	10510	A²s
	T _{vj} = 130 °C; 8,3 10 ms	7810	A²s
V _T	T _{vi} = 25 °C; I _T = 300 A	max. 2,25	V
V _{T(TO)}	T _{vi} = 130 °C;	0,9	V
r _T	T _{vj} = 130 °C	5	mΩ
I _{DD} ; I _{RD}	T_{vj} = 130 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}	max. 20	mA
t _{gd}	$T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A}/\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 \cdot V_{DRM}$	2	μs
(dv/dt) _{cr}	T _{vi} = 130 °C	max. 1000	V/µs
(di/dt) _{cr}	T _{vi} = 130 °C; f = 50 Hz	max. 200	A/µs
t _q	T _{vi} = 130 °C; typ.	80	μs
I _H	T _{vj} = 25 °C; typ. / max.	150 / 250	mA
I _L	T_{vj} = 25 °C; R_{G} = 33 Ω	300 / 600	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 \text{ °C; d.c.}$	min. 200	mA
V_{GD}	T _{vj} = 130 °C; d.c.	max. 0,25	V
I _{GD}	T _{vj} = 130 °C; d.c.	max. 6	mA
R _{th(j-c)}	per thyristor	0,32	K/W
- 0 - /	total	0,0533	K/W
R _{th(c-s)}	total	0,03	K/W
T _{vi}		- 40 + 130	°C
-		- 40 + 125	°C
T _{stg}			V
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	-
M _s	to heatsink to terminals	5 ± 15% 5 ± 15%	Nm Nm
M _t a		5 * 9,81	m/s ²
a m	approx.	250	g
-	approx.		9
Case		G 65	



31-03-2004 SCT

© by SEMIKRON

SKDT 230

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.